If it's not what You are looking for type in the equation solver your own equation and let us solve it.
176=-16t^2+196t
We move all terms to the left:
176-(-16t^2+196t)=0
We get rid of parentheses
16t^2-196t+176=0
a = 16; b = -196; c = +176;
Δ = b2-4ac
Δ = -1962-4·16·176
Δ = 27152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27152}=\sqrt{16*1697}=\sqrt{16}*\sqrt{1697}=4\sqrt{1697}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-196)-4\sqrt{1697}}{2*16}=\frac{196-4\sqrt{1697}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-196)+4\sqrt{1697}}{2*16}=\frac{196+4\sqrt{1697}}{32} $
| 20w-6=10w+4 | | 16r-10r-4=20 | | 160.67=2000(r)8/12 | | 20=4(s+3) | | -2(v6)=-8 | | 2x+3=6x+25 | | 26=z+316/20 | | X^2-117=4x | | 1/2x=100.6 | | x=1.4x-3 | | x+(-1.3)=2 | | 8x+4=2x-16 | | 12k+2k+6k-10=10 | | 2(y-12)=2 | | y+110/30=10 | | 5z-10=4-2z | | y/10+5=-7 | | 4x+12=4x+13 | | -17x-11=-45 | | 5s+4-2s=6s+4 | | 4x+12.95=72.95 | | 2×+4y=-12 | | 10=5x/2 | | 3n-7=-2(5-1.5n) | | 9x-12=66 | | -5/6x+2=3 | | 2=z-3/2 | | 6-q=4 | | 29(f+2)=986 | | -4g+3g=20 | | m+2/4=1/4m-1 | | 12s-4s=8 |